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ABSTRACT 
Numerical algorithms are based fundamentally on polynomial interpola- 

tion. In regions of the computational domain where a low order polynomial 
fits the data well one will find small errors in the computed quantities. There- 
fore, in order to design robust methods for grid selection for AMR schemes 
or zone selection for ALE schemes, one needs some information on the lo- 
cal polynomial structure of the fields being computed. We provide here 
algorithms and software for selecting zones based on local estimates of poly- 
nomial interpolation error. The algorithms are based on multiresolution and 
wavelet analysis. 
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1 Introduction 

Traditionally, Adaptive Mesh Refinement (AMR) algorithms use grid refine- 
ment and coarsening flags which rely on a combination of information from 
the first derivative and the second derivative operators. Such Aags usually 
work, but one can always construct counter-examples whcn they fail. What 
one needs instead is a direct measure of how well the computational data fits 
a local polynomial. In other words, one needs a measure of the local trunca- 
tion error of the interpolation since this is exactly what produces the errors 
in the numerical operators. Mu1 tiresolution and wavelet analysis can provide 
these estimates of local truncation error in a very cost effcctive manner. 

Alternating Lagrangian-Eulerian Schemes basically follow the mass and 
the zone selection is, therefore, determined by where the mass goes and by 
where the remap process places zones that have tangled or that will tan- 
gle soon. The strong point of the ALE approach is that one will maintain 
grid points on material interfaces and a weak point is that following the mass 
does not produce grids that keep polynomial truncation error low. Therefore, 
one can have clusters of grid points in regions where mass has congregated 
producing density profiles that are large in magnitude but more or less uni- 
form. But, from a numerical point of view, one does not need to have zones 
clustered where mass is clustered, one needs zones where mass transitions 
from low density profiles to  high density profiles and visa versa. Likewise, 
one needs zones where any of the computation variables "change". Where, 
"change" is quantified by how well the grid point values of the given variable 
fit a local low-order polynomial. 

The methods that we are suggesting here can be used in conjunction with 
existing grid and zone selection algorithms. For example, with ALE schemes 
one might consider weighting the zone selection mechanism so that trunca- 
tion error is kept within reasonable limits, thereby keeping the numerical 
errors under control. If there are regions of the computational domain where 
refinement alone can not resolve the features, then one can use wavelets to do 
local filtering do damp out oscillations or other features that are considered 
to be of numerical origin or simply unwanted for stability considerations, see 

This document is structured as follows: First we explain a bit of wavelet 
analysis and multiresolution analysis since this is the theoretical framework 
on which the grid selection is based. Next, we review the fundamental issues 

[71- 
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in the construction of numerical schemes. Finally, we give Fortran software 
that does the actual grid sclcction. We plan to construct similar C software 
if Sufficient interest exists. 

2 Wavelets and Polynomial Structure 

In order to understand the grid refinement and zone selection mechanism, we 
will need a brief introduction to multiresolution and wavelet analysis. Note 
that the current usage of multiresolution is in the spirit of Harten, see [2], [3], 
and applied in many areas of application, see [4], [5]. In Harten’s approach, 
one finds polynomial truncation error by examining the difference between 
interpolated values on a grid of N points with the exact values provided on 
a grid of 2 N  points. The information provided is then used to decide when 
should call expensive flux evaluations and when a simple and very inexpensive 
interpolated value is sufficient. From here our focus will be on the orthogonal 
class of wavelets known as Daubechies wavelets and the applications to grid 
selection, see [l], [lo], [ll], [12], [13], and [14]. But, we consider the two 
approaches, Harten’s multiresolution and the traditional wavelet approach, 
to be more or less equivalent for the purposes of selecting numerical grids 
and zones. 

To define Daubechies-based wavelets, see [9] for the original work, con- 
sider the two functions 4 ( x ) ,  the scaling function, and $(z), the wavelet. 
The scaling function is the solution of the dilation equation, 

k=O 

where #(z) is normalized Jrm @(z)dx = 1, and the wavelet $(x) is defined in 
terms of the scaling function, 

k=O 

One builds an orthonormal basis from +(z) and $(z) by dilating and 
translating to get the following functions: 

d ( x )  = 2-44(2-G - k), (3) 
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whcrc j ,  k E 2. j is thc dilation parameter and I; is the translation pa- 
rameter. The coefficients H = { h k } ~ ~ ~  and G = {gk};:; are related by 
gk = ( - l ) k h ~ - k  for k = 0, ..., L - 1. 411 wavelet properties are specified 
through the parameters H and G. If one’s data is defined on a continuous 
domain such as f(x) where x E R is a real number then one uses &(x) and 
&(z) to perform the wavelet analysis. If, on the other hand, one’s data is 
defined on a discrete domain such as f ( i )  where i E 2 is an integer then the 
data is analyzed, or filtered, with the coefficients H and G. In either case, 
the scaling function 4(z) and its defining coefficients H detect localized low 
frequency information, i.e., they are low-pass filters (LPF), and the wavelet 
$(z) and its defining coefficients G detect localized high frequency informa- 
tion, i.e., they are high-pass filters (HPF). Specifically, H and G are chosen 
so that dilations and translations of the wavelet, &(x), form an orthonormal 
basis of L2(R) and so that $(z) has M vanishing moments which determines 
the accuracy. In other words, &(z) will satisfy 

where 6kl is the Kronecker delta function, and the accuracy is specified by 
requiring that $(z) = $g(x) satisfy 

00 lm .ICl(zc)zrndz = 0, (6) 

for on = 0, ..., M - 1. Under the conditions of the previous two equations, for 
any function f(z) E L2(R) there exists a set ( d j k }  such that 

where 00 

d j k  = lrn f(z)llJ,(z)dz. (8)  

For Daubechies wavelets the number of coefficients in H and G, or the 
length of the filters H and G, denoted by L, is related to the number of 
vanishing moments M by 2M = L. The coefficients H needed to  define com- 
pactly supported wavelets with a higher degree of regularity can be found in 
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[9]. As is expected, the regularity increases with the support of thc wavelet. 
The usual notation to denote a Daubechies-based wavelet defined by coeffi- 
cients H of length L is DL. 

It is usual to let the spaces spanned by &(z) and &(x) over the parameter 
I C ,  with j fixed, be denoted by 4 and Wj respectively, 

Wj = span %(x). 
kEZ 

The spaces 4 and Wj are related by, 

... c VI c v, c v-1 c ..., (11) 

& = &+I@Wj+l. (12) 
and 

The previously stated condition that the wavelets form an orthonormal 
basis of L2(R) can now be written as, 

L2(R) = @ wj. 
j E Z  

2.1 Restriction to Finite Dimensions 

Of course, infinite sums are meaningless when one begins to implement 
wavelet analysis on a computer where there is always a largest scale, a small- 
est scale, as well as boundaries. That is, one must limit the range of the scale 
parameter j and the location parameter k. The location parameter k can be 
limited by, say, imposing periodic boundary conditions which would require 
that k also be periodic or by building special scaling functions and wavelets 
at the boundaries, see [8], [16]. 

Consider now the scale parameter j. As stated above, the wavelet ex- 
pansion is complete in the sense that an arbitrary function with finite energy 
can be represented by ‘summing up’ the orthogonal subspaces W, which con- 
tain frequency components related to the parameter j: L2(R) = ejEZWj. 
Therefore, any f(x) E L2(R) can be written as, 
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In this expansion, functions with arbitrarily small-scale structures can be 
represented. In practice, however, there is a limit to how small the smallest 
structure can be. This would depend, for example, on how fine the grid is in 
a numerical computation scenario or perhaps what the sampling frequency 
is in a signal processing scenario. Therefore, on a computer an expansion 
would take place in a spacc such as, 

and would appear as, 

J 

where, again, 4 = JFw f(x)'ICl;lk(x), and s i  = JFw f(x)$j!(x). In this expan- 
sion, scale j = 0 is arbitrarily chosen as the finest scale that is needed, and 
scale J would be the scale at which a kind of local average, $j!(x), provides 
sufficient large scale information. 

3 Estimating Computational Errors 

As outlined in the previous section, scaling functions are designed to ap- 
proximate low order polynomials exactly up to a given order, and wavelets 
are orthogonal to  these same low-order polynomials. Any deviation from 
low-order polynomial structure in a computational domain can then be de- 
tected by wavelet analysis, see Jameson 1998. This measure of deviation from 
low-order polynomial structure is exactly what is needed to measure com- 
putational error. The reason for this is that fundamentally all non-spectral 
numerical schemes are constructed from low-order algebraic polynomials, and 
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such schemes are exact if the data falls exactly on a low-order polynomial. Ac- 
tually, spectral methods also follow this same rule, but in the case of Fourier 
spectral methods, thc polynomials are trigonometric and not algebraic and 
arc global instead of local. To be precise, let us rcvicw the fundamentals of 
how numerical methods arc constructcd and how wavclet analysis can detect 
errors in a computational scheme. 

Numerical schemes for the approximation of partial differential equations 
on a computer provide a mechanism for taking one set of N numbers to 
another set of N numbers. To make this transition from one set to the next 
set, we must take derivatives but the data is a set of points which are not 
connected. We must, therefore, choose some type of function with which we 
can connect these points so that we can take a derivative. There are many 
choices which can be made, but fundamentally we are always working with 
some type of polynomial be i t  algebraic, trigonometric, or other. 

Simply said, one can generate differencing coefficients by first interpolat- 
ing a polynomial of any order through a set of data, followed by differentiation 
of this polynomial and evaluated at a grid point. As long as the number of 
grid points exceeds the order the polynomial by one, then the interpolation 
is unique and the differencing coefficients are likewise unique. 

Interpolation with algebraic polynomials is probably the most common 
form of interpolation, and it is from this type of interpolation that com- 
mon uniform grid finite difference methods can be found. The well-known 
Lagrange interpolation formula for algebraic interpolation is, 

n n 

A j ( z k )  = 6 j k  For given values wo, wl, ..., wn, the polynomial 

in Pn and takes on these values at the points zi: 

for k = 0,1, ..., n, and it is the truncation error of this interpolation which 
determines the order accuracy that one obtains when differentiating. 
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Recall that the remainder for algebraic polynomial intcrpolation is, 

where < lies betwcen the smallest and the largest xi. Note that when one 
builds differencing operators after interpolation that the tcrm, 

is unchanged whereas the term involving the products of the point of interest 
x and the grid points xi goes from a term of the form, 

n 

i = O  

to a term of the form, 
n-1 n (x - Xi). 
i=O 

In other words, if the computational data is exactly a polynomial of order n or 
less then the remainder term is zero and there is no error in the computation. 

Consider the simple case of interpolating an algebraic quadratic polyno- 
mialp2(x) to  a function f(z) at the grid points xo < x1 < 5 2 :  p2(zi) = f(xi), 
i = 0,1,2. The remainder term for some <, xo 5 < 5 x2, is 

Now, differentiate and evaluate at x = 21 to  get, 

where h = x1 - q = 2 2  - x1 . If the grid is evenly-spaced then the differences 
(xi - zj) are some integer multiple of the smallest difference which one can 
denote by h. If one doubles the number of grid points then each of the 
distances (xi - xj) becomes half as large and the accuracy for this quadratic 
example will be 2. To be specific, if the computational data is quadratic 
polynomial or less, then the remainder is zero and the computation has no 
error. 
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In practice, however, computational data will rarely be an exact low-order 
polynomial, therefore there is always error. The size of this computational 
error will depend on the deviation from low-order polynomials and can be 
readily measured with wavelet analysis. If on the other hand, the data is 
exactly a low-order polynomial and the numerical method is "exact", then 
wavelets of the corrcsponding order of accuracy will be orthogonal to the 
data and all wavelet coefficients will be zero indicating, correctly, that the 
calculation has no error. 

Recall from above that the wavelet coefficients are found as the inner 
product of the function at hand and the corresponding wavelet, 

where the decay of the expansion coefficients depends on the local regularity 
of f (5) and one can derive the following expression, see Strang 1996: 

From Eq.(26) we find that if f(x) behaves like a polynomial of order less 
than M inside the small interval, then di  vanishes exactly. 

Thus, by considering the magnitude of cl; one obtains a local measure of 
the deviation of the computational data from low-order polynomials. Indeed, 
the information given by Eq.(26) is of very local character and and provides 
an excellent estimate of local calculation error. In Figures (l), (2), (3), and 
(4). 

4 Software Implementation 

In this section we present the actual software that performs the grid and 
zone selection mechanism. The main subroutine newgr. f performs two major 
functions. The lines of code from line 9 to line 13 perform the wavelet analysis 
producing the wavelet coefficients of the input function f and from line 15 
to line 43 the numerical grid is generated based on these wavelet coefficients. 

4.1 
To illustrate, assume that the user has determined that 8 is the maximum 
desired ratio between the maximum Ax and the minimum Ax. As noted 

Generating the Wavelet Coefficients: lines 9-13 
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above, this corresponds to 3 wavelet decompositions. As above, let VO denote 
the subspace spanned by scaling functions on the finest scale. One wavelet 
dccomposition produces the division of VO into K and W1: VO = W1 @ VI. 
Similarly, three wavelet decompositions produces, VO = Wl @ W, @ W, @ V,. 
Each of these wavelet decompositions is performed by the subroutine filter. f. 
The input to filter.fis the variable Eztdata which contains the scaling function 
coefficients for subspace V, and the output variables of filter.fare the variables 
data and HPF which contain the coefficients for the subspaces V,+, and W,+l, 
respectively. The variable is named Eztdata because the coefficients of have 
been ‘extended’ to  reflect the boundary conditions. In this version of the 
program, the data is extended by adding constant scaling function coefficient 
values to the ends of the vector data by the routine consteztf. Note, if one 
desires periodic boundary conditions then one ‘wraps’ the scaling function 
coefficients around such that one extends the vector data by returning to the 
beginning of the same vector. Likewise, if one wants a smoother extension 
of data then one can write a routine which extends linearly or by some other 
higher order polynomial. 

4.2 
The lines of code from 16 to 20 add the grid points which are referred to as 
the base grid. That is, these points are evenly-spaced and depend only on the 
number of wavelet decompositions one has chosen. For example, if N = 128 
and Nd = 3 then the base grid will consist of 16 = 128/23 evenly-spaced 
points. If the input function f; is smooth with respect to the threshold, th, 
then the output grid zo could very well be composed only of the base grid. 

The lines of code from 21 to  42 add the wavelet refinement to  the base grid. 
Using the standard wavelet notation for the example with 3 decompositions, 
V, = W1 @ W2 @ W3 @I &, the base grid corresponds to the scaling function 
subspace V3 in which all the scaling functions are used. If the spacing between 
grid points in is Ax then the spacing between grid points in V3 will be 
8112. The addition of the wavelets in W3 which have coefficients larger in 
magnitude than the threshold th will refine the grid to  a spacing of 4Ax 
in these large coefficient regions. Likewise, adding W2 refines to 2Ax and 
adding Wl refines to the finest scale of Ax. Testing the magnitude of the 
wavelet coefficients occurs on line 32 of the code. The variable iflagpoint is 
used with iw in order to  include a grid point xi(ipnt) if, say, 2/3 of the wavelet 

Generating the Grid: lines 15-43 
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cocficients in the region around xi(ipnt) are large. This mechanism adds a 
kind of ‘softness’ to the grid sclection mechanism and appears to work very 
well when iw = 1. Line 38 is where the ncw grid xo is constructed. Lines 44 
and 45 simply add the right-hand boundary grid point and function value. 

4.3 

Input Variables 

The input and output variables 

xi = The evenly-spaced grid point values. 

0 fi = The evenly-spaced samples of the function which is to be analyzed. 
fi(1) = value at left-hand boundary. fi(N+l) = value at right-hand 
boundary. If boundary conditions are periodic, fi(1) = fi(N+l). 

0 L = Defines which wavelet is used. For Daubechies 4, L=4. 

0 N = The number of points in f; minus 1. N is a power of 2. 

0 th = Threshold to  determine which grid points are used. If th  i 0 then 
all grid points are used. If th  = large number, perhaps 10, then only 
the grid points on the ‘coarsest’ grid are used. 

0 Nd = Number of wavelet decompositions, e.g., if Nd = 3, then the ratio 
of the maximum Ax to the minimum Ax is 8 = 23. 

0 iw = Width of wavelet refinement stencil. If iw = 1, then the magni- 
tude of wavelet coefficients are checked at three locations from -iw to 
iw or at the locations -1, 0, 1 in order to  determine if the grid point 
at location 0 should be used. So that if one has a hyperbolic system, 
or traveling waves, then if iw > 2 one can add grid points by looking 
‘backwards’ and ‘forwards’ for a perturbation which might move into 
the region currently being examined. This is a kind of preparation for 
the future evolution of the system at hand. 

Output Variables 

0 xo = The new wavelet-chosen grid. Note that the grid points on the 
boundaries are always used. That is, xo(1) = xi(1) and xo(No) = 
xi(N+l). 
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0 fo = The function values on the new wavelet-chosen grid. 

0 No = Thc number of grid points in thc new grid. Note that whereas 
‘No’ counts cvcry grid point, the input variable ‘N’ does not include 
the last point on thc right hand boundary. This is done to  facilitate 
the use with periodic as well as non-periodic boundary conditions. 

5 Grid Generation Subroutines 

The following four subroutines provide a stand-alone 1 dimensiona.1 grid gen- 
eration and zone selection package. 

5.1 newgr.f 

This is the main subroutine which will be called by the user created driver 
program. 

1 subroutine newgr(xi,fi,L,N,th,Nd,iw,xo,fo,No) 
2 parameter(Nmax = 260, Lmax = 8, Ndmax = 8) 
3 real xi(Nmax) ,fi(Nmax) ,xo(Nmax) ,fo(Nmax) ,h(Lmax) ,g(Lmax) 
4 real HPF(Nmax/2+Lmax,Ndmax) ,data(Nmax),th,Extdata(Nmax+Lmax) 
5 call getcoef(L,h,g) 
6 do i = 1,Nmax 
7 data(i) = fi(i) 
8 enddo 
9 do idecomp = 1, Nd 
10 Ndim = N/(2**(idecompl)) 
11 call constext(data,Ndim,L,Extdata) 
12 call filter(Extdata,h,g,Ndim,L,data,HPF(l,idecomp)) 
13 enddo 
14 igrid = 0 
15 do 10, ipnt = l ,N 
16 if ( abs( mod(ipnt-l,2**(Nd))) .LT. .00001 ) then 
17 igrid = igrid + 1 
18 xo(igrid) = xi(ipnt) 
19 fo(igrid) = fi(ipnt) 
20 endif 
21 do 20, idecomp = l,Nd 
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22 n l  = abs(ipnt - 2**(idecomp-l) - 1) 
23 n2 = 2**(idecomp) 
24 if ( abs(mod(nl,n2)) .LT. .00001 ) then 
25 indexl = l+nint(real(nl)/real(n2)) 
26 iflagpoint = 0 
27 do iwiden = -iw, iw 
28 iindex = indexl + iwiden 
29 if( iindex. LE. 1 .OR.iindex.GE.N/ (2** (idecomp) ))then 
30 iindex = index1 
31 endif 
32 if (abs ( H P F ( iindex , idecomp) ) . G T. t h) then 
33 iflagpoint = iflagpoint + 1 
34 endif 
35 enddo 
36 if (iflagpoint .GE. iw+l) then 
37 igrid = igrid + 1 
38 xo(igrid) = xi(ipnt) 

, 39 fo(igrid) = fi(ipnt) 
40 endif 
41 endif 
42 20 continue 
43 10 continue 
44 xo(igrid+l) = xi(N+l) 
45 fo(igrid+l) = fi(N+l) 
46 No = igrid+l 
47 return 
48 end 

5.2 getc0ef.f 
This subroutine is called by newgr.fand its only function is to get the wavelet 
coefficients. Included here are the numbers only for the 0 4  wavelet. Other 
wavelet coefficients can be added by the user. The numerical values for the 
coefficients h(:) in the following subroutine came from [9]. 
1 subroutine getcoef(L,h,g) 
2 parameter (Lmax = 8) 
3 real h(Lmax), g(Lmax) 
4 h(1) = A82962913145 
5 h(2) = .836516303738 

13 



6 h(3) = .224143868042 

8 do i = 1,L 
9 h(i) = h(i)/(sqrt(2.0)) 
10 enddo 
11 do i = 1,L 
12 g(i) = (-l)**(i-1) * h(L - i + 1) 
13 enddo 
14 return 
15 end 

7 h(4) = -.129409522551 

5.3 fi1ter.f 
This subroutine does the actual wavelet filtering by dividing Eztdata into its high 
and low components. 
1 subroutine filter(Extdata,h,g,N,L,low,high) 
2 parameter (Nmax = 260,Lmax = 8) 
3 real low(Nmax/2+lmax) , high(Nmax/2+Lmax) 
4 real Extdata(Nmax+Lmax), h(Lmax), g(Lmax) 
5 do i = 1, Nmax/2+Lmax 
6 low(i) = 0.0 
7 high(i)= 0.0 
8 enddo 
9 do i = 1, N/2 + (L-2)/2 
10 do j = l,L 
11 ij = 2*(i-l) + j - (L-2) 
12 low(i) = low(i) + hdj) * Extdata(ij+2) 
13 high(i) = high(i) + gdj) * Extdata(ij+2) 
14 enddo 
15 enddo 
16 return 
17 end 

5.4 c0nstext.f 
This routine takes care of the boundary conditions by extending the scaling 
function coefficients in an appropriate way. The routine provided here extends 
with constant values. The user can define other routines for whatever boundary 
conditions are needed. 
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1 sub i - . ~  t ine cons text (dat a,N ,L ,Ex t dat a) 
2 par-tlrneter (Nmax = 260,Lmax = 8) 
3 real data(Nmax), Extdata(Nmax+Lmax) 
4 d 0  = 1, N 
5 Ex:ir;ata(L/2+i-l) = data(i) 
6 enucno 
7 d o  = 1, LA 
8 Exn r;ata(L/2-i) = data( 1) 
9 emit ti o 
10 do . = I, L-1 
11 Ex: r.data(N+L/2+i- l)=data( N) 
12 encndo 
13 ret-urn 
14 enci 

6 Doubling the Grid Density 

Note that the software included here takes a fine grid, VO, and chooses from 
VO a <ubset of points from Wl @ W2 @ W3 @ V3 to obtain a numerical grid. 
It is 1)ossible that during a numerical simulation that even the finest grid 
Ax ir: I/, is not fine enough and that a grid spacing Ax/2 is needed. This 
is possible by adding to Vo the refinement WO to get V-1 = VO @ WO. In the 
code ;.his can be accomplished by first testing the magnitude of the wavelet 
coeffic-ients in the subspace Wl by adding a test statement similar to line 32 
in which the magnitude of the numbers in HPF(:,l), corresponding to W1, are 
testefi. against a second threshold number. For example, if t k . O O 1  then one 
migh: decide to double the grid density if magnitude of HPF(:,l)> .01 (The 
reader .  should experiment with these numbers). If this test is true then exit 
newyr: .f and double of the grid density of zi by interpolation thereby making 
N berome 2N followed by another call to  newgr.f. Note that it is necessary 
to dc,-,uble the grid before the data becomes too ‘rough’. Once numerical 
oscillmtion has begun, it is too late. You must make your threshold numbers 
sensic;ive enough to ‘see’ to high frequency regions coming and refine ahead 
of tiIzw. This type of intuition is easy to develop with a little practice. 
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7 conclusion 

In this manuscript we haw introduced the use of multiresolution and wavelet 
analysis for selecting suitable grids for AMR schemes and for zone selection 
for ALE schemes. The fundamental principle behind using the MR and 
wavelet approach is that they provide excellent estimates of the local trunca- 
tion error of the numerical approximations. I t  is this local truncation error 
that is responsible for the numerical errors and, thus, one can greatly increase 
the reliability of numerical simulations by keeping the numerical errors more 
or less uniform across the computational domain and MR-wavelet analysis 
provide a very effective tool for this application. 
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Wavelet-Optimized Finite Difference 
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Figure 1: Solution to Burgers equation at a given time with numerical grid 
as selected by wavelets and multiresolution analysis. Boundary conditions 
are periodic. 
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Figure 2: Solution to Burgers equation at a given time with numerical grid 
as selected by wavelets and multiresolution analysis. Boundary conditions 
are not periodic. 
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Figure 3: An example of a flame front with steep gradient region requiring 
adaptive meshing for uniform resolution. Wavelet and Multiresolution anal- 
ysis give the truncation error necessary for choosing good grids and zones. 
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The grid for the flame front as determined 
tiresolution analysis. 
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